Fruits, animals and long-distance dispersal

In October 2015 Hervé Sauquet, Thomas Couvreur and I went on a field expedition in the rainforests of Borneo. Our aim was to collect plants belonging to the order Magnoliales, which includes the Annonaceae family. Annonaceae have beautiful flowers and tasty fruits (e.g. the sweetsop and soursop), worldwide there are ca. 2400 species, and they typically occur in tropical rainforests. Our expedition led, eventually, to a publication: “Which frugivory‐related traits facilitated historical long‐distance dispersal in the custard apple family (Annonaceae)?” published in Journal of Biogeography. and co-authored by Daniel Kissling, Lars Chatrou, Thomas Couvreur, Hélène Morlon and Hervé Sauquet. Read the press release from the University of Amsterdam here. A video of our Borneo expedition is available here.

How did Annonaceae colonise different continents or islands and their rainforests? How did they get there? To understand this, we need to look into how the plants are dispersed, which is via their fruits and seeds. On Borneo, our aim was therefore to collect the fruits and measure their ‘traits’ (e.g. fruit length, seed length, conspicuousness of fruit display). These traits are important because they attract animals to feed on the fruits and disperse the seeds. We expected that certain fruit-eating and seed-dispersing animals (i.e. frugivores) are more likely to perform intercontinental long-distance dispersal. For example, large-bodied animals (megafauna, such as elephants) and strong-flying birds (e.g. hornbills) have large home-ranges and/or can cross barriers (such as oceans), and therefore move across large distances. Because these animals prefer certain fruits (e.g. large fruits, or fruits with particular colours) we expect that these Annonaceae fruits may have been responsible for intercontinental long-distance dispersal, for example from South America to Africa, which happened repeatedly in the family throughout its history. Our results confirm these expectations.

Besides fun in the rainforest, this research was important to me because it was my first postdoc, I received a Swiss Mobility Fellowship to perform it, and it allowed me to live in Paris for a while and work with a couple of amazing researchers. I hope to continue working with these people on this tasty family in the future. For example, a lot more genetic and functional trait data need to be collected to be able to understand the complex eco-evolutionary dynamics that have led to the spectacular Annonaceae diversity.

From left to right, starting at the top: Rafflesia flower; Goniothalmus roseus fruits; Thomas, Renske & Hervé in the field; rainforest Borneo; Enicosantum sp. flower; the fieldwork team in action (twice).

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s