Looking for a technical assistant to join the group

Details on how to apply can be found here: 174_iDiv_Tech_Assistant_EA_REO_engl (deadline 12th of August 2020).

Technical assistant Evolution & Adaptation group at iDiv (Leipzig, Germany)

Limited until 30 September 2021. 100% of a full-time position. Salary: Entgeltgruppe 6 TV-L. Workplace: Leipzig.

The Evolution & Adaptation research group focuses on the interchange between (macro-) ecology and evolution, to understand the global distribution of genetic, taxonomic and functional diversity. We therefore generate genetic (genomic) data (e.g. from plants from Madagascar), and build databases of biodiversity data (such as functional traits) to investigate the link between genes and phenotype. Understanding these links is important for predicting how adaptable biodiversity is to current and future global change.

Tasks:

  • Combining (botanical) data sources (such as monographs and floras) to build databases for biodiversity data (using Access/PROTEUS or SQL)
  • Measuring functional plant traits from herbaria or fresh sample material
  • Collecting and cleaning plant species occurrence data from online data sources/herbaria
  • General laboratory organization and maintenance
  • Planning and conducting basic molecular techniques
  • Analysis of generated data and preparation of suitable presentations

Requirements:

  • Professional qualification as a Biological-Technical Assistant or an equivalent degree (e.g. BSc or MSc in Biology)
  • Hands-on experience with basic molecular techniques (e.g., DNA/RNA isolation, PCR, real-time PCR, gel electrophoresis) preferable
  • Experience in building databases preferable
  • Very good computer skills (MS Windows, MS Office, R, etc.)
  • Very good spoken and written English
  • Strong team player also able to work independently
  • Very well organized and reliable
  • Experience with working in interdisciplinary and international teams

For questions, contact me on onsteinre@gmail.com!

PalmTraits 1.0

Functional traits are characteristics of individuals, populations and species that determine their fitness, via their impacts on growth, survival and reproduction. Examples are leaf size, leaf thickness, fruit size, wood density…. Traits are great proxies for the ecology of species, and used extensively in macroecological and macroevolutionary research. PalmTraits 1.0 provides species-level trait data for all ca. 2500 palm (Arecaceae) species worldwide. The database is available from Dryad. The article in which we present the data was published in Scientific Data.

Screen Shot 2019-12-19 at 11.27.35

PalmTraits 1.0, Figure from the publication in the journal Scientific Data

What else did we (I and my collaborators) do with these data? For example, using average fruit size of palm species, we asked questions such as: Do large fruits co-occur with large-bodied animals that disperse these fruits? And: Does fruit size influence speciation rates via the interaction between fruits and fruit-eating and seed-dispersing animals? What happened to palms with large, ‘megafaunal’ fruits since the Quaternary extinctions of large-bodied animals?

Answers to these questions can be found in these publications:

Onstein, R.E. , Baker,W.J., Couvreur, T.L.P. , Faurby, S., Herrera-Alsina, L., Svenning, J.-C. & Kissling, W.D. (2018). “To adapt or go extinct? The fate of megafaunal palm fruits under past global change”. Proceedings of the Royal Society B 285: 20180882. [ABSTRACT] [PRESS RELEASE]

OnsteinR.E. , Baker,W.J., Couvreur, T.L.P. , Faurby, S. , Svenning, J.-C. & Kissling, W.D. (2017). “Frugivory-related traits promote speciation of tropical palms”. Nature Ecology & Evolution 1:1903–1911. [ABSTRACT] [DATA & CODE] [PRESS RELEASE] [BLOG]

However, the data can be used to answer many more questions, related to the ecology and evolution of palms. Species differ not only in their fruit sizes, but also in, for example, fruit colours, leaf structures and sizes, the presence or absence of spines, growth forms, plant height. In combination with distribution data and a phylogeny, we can now answer questions such as: when did these traits evolve? Where do species with these traits occur? Where do we find the most colourful fruits, and why? Where do species occur that have spines? Etcetera…

Paris-Sud

P1090494

frugivory in the Atlantic rainforest, Brazil

I am currently doing a postdoc in the Sauquet lab at the Université Paris-Sud. In collaboration with Daniel Kissling, Hélène Morlon, Thomas Couvreur, Lars Chatrou and Hervé Sauquet, I study “Frugivory, functional traits and the diversification of a tropical angiosperm family: Annonaceae (Magnoliales)”.

For a 1 minute summary of the project- watch this video.

In short –

Frugivory (i.e. fruit-eating and seed dispersal by animals) is ubiquitous in tropical ecosystems, but the role that frugivores have played in the macroevolution of species-rich tropical plant families remains largely unexplored. This project will investigate how plant traits relevant to frugivory (e.g. fruit size, fruit color, fruit shape, understory/canopy growth form, etc.) are distributed within the angiosperm family of custard apples (Annonaceae), how this relates to diversification rates, and whether and how it coincides with the global biogeographic distribution of vertebrate frugivores (birds, bats, primates, other frugivorous mammals) and their ecological traits (e.g. diet specialization, body size, flight ability, etc.). Annonaceae are particularly suitable because they are well studied, species-rich (ca. 2400 species), characteristic in all tropical rainforests, and dispersed by most groups of vertebrate seed dispersers. Using a phylogenetic framework and functional trait and species distribution data we will test (i) how fruit trait variability relates to phylogeny and other aspects of plant morphology (e.g. leaf size, plant height, growth form, floral traits) and animal dispersers and their traits, (ii) to what extent interaction-relevant plant traits are related to diversification rates, and (iii) whether geographic variability in fruit traits correlates with the biogeographic distribution of animal dispersers and their traits.