10 things I hate about being a scientist (but I love it)

10 things I hate about being a scientist:

– I hate those days when I realise that what I do is most likely totally useless and will probably never lead to the greater purpose I have in mind for my research;

– I hate the struggle to find the right words (to explain what I do, for example) because jargon is flying through my mind (and watching over my shoulder, correcting me);

– I hate it that some scientists think they are better than others, because they have the ability to make other people cry;

– I hate it that I cannot have a conversation about anything else than science or career anymore. I do not even enjoy talking about anything else anymore, sometimes… ;

– I hate it that my income is very low relative to my non-scientist friends. I’m joking – I do not actually mind that 🙂 ;

– I hate the still existing gender bias in academia;

– I hate meeting great people but then they leave again;

– I hate (and enjoy at the same time) not to know where I will be in a year from now;

– I hate negative reviews because they make me feel even more insecure about my research and where I am trying to get with my life (and career);

– I hate it when coming home after a long day of work and I fall asleep immediately. Where has my life gone?

After all this has been said, I still do not want to do anything else than science, because those short moments I do feel happy about my results and their impact are very rewarding. And if I compare doing science to any other purpose in life, this is probably one with the least egocentric element in it. And who knows – maybe one day I will make the difference and save our planet from extinction….

IBS conference, Tucson

Last week I attended the 8th Biennial conference of the International Biogeography Society in Tucson, Arizona (U.S.A.). The conference included symposia on modelling large scale ecological and evolutionary dynamics, experimental macroecology and building up biogeography from process to pattern. I presented the first results of my work on what may happen to megafaunal-fruited palm lineages under rapid global environmental change. These species with anachronistic fruits (> 4 cm in length) suffer from dispersal limitation because of recent extinctions of their large-bodied (megafauna) fruit and seed dispersers, such as gomphotheres, ground sloths and glyptodonts. However, we do not know how these palms have survived and evolved in the past – and whether they have suffered from extinction previously, during Quaternary climate change for example. In this talk I showed how over the last 2.6 million years (the Quaternary) these megafaunal-fruited palm lineages have experienced increasing extinction rates, but only in the Americas, and how they have evolved smaller fruits in Southeast Asia and Australasia. These smaller fruits may be adaptations to bird-dispersal in these dynamic island systems.

Proteaceae and their success in open habitats

geb-cover-onstein-et-al-leucospermum-cordifolium

Leucospermum erubescens

In a recent study, published in the journal Global Ecology and Biogeography, we investigate the evolution of leaf morphologies and climatic niches in the Proteaceae family. Proteaceae is a Southern 20131216143659639-page-001Hemisphere family famous especially in Australia and South Africa for their impressive flowers and leaves. They are also tasty – the macademia nut belongs to the Proteaceae as well. Species in the Proteaceae family occur in all kinds of habitats, from montane forests to dry heathlands to tropical rainforests. During their evolution over millions of years, they managed to adapt to these variable and extreme habitats and climates, and their leaves may have helped them doing so. In this study we test whether open (e.g. mediterranean) and closed (e.g. tropical rainforest) habitats have selected for divergent leaf designs. We also show that the combination of certain leaf traits (e.g. small, sclerophyllous leaves with many teeth) in interaction with certain climatic niches (e.g. warm, dry, mediterranean) may increase diversification rates. This could explain some of the spectacular radiations within the family, for example inbanksia-speciosa-9_10-566x800 genus Banksia in Australia, or the Protea in Africa. Last, we show that there is more stochastic evolution of traits and niches in open habitats, which may explain some of the extreme forms and ‘misfits’ we find here. This “disparification” maybe even led to the process of reproductive isolation and speciation, roupala-longipetiolata-4_6-mtvia ecological divergence, and the ~1700 species of Proteaceae we find on Earth.

Onstein, R.E., Jordan, G.J., Sauquet, H., Weston, P.H., Bouchenak-Khelladi, Y., Carpenter, R.J., Linder, H.P. (2016). “Evolutionary radiations of Proteaceae are triggered by the interaction between traits and climates in open habitats.” Global Ecology and Biogeography 25 (10):1239–1251. doi: 10.1111/geb.12481

 

The fate of rain forests – NESCent video 2016

P1070823

Pyrops candelaria in Borneo

New video on rain forest evolution – and why we need the field of evolutionary biology to understand (and possibly change) their fate. Current threat by humans is increasing – but we don’t know how species will adapt, move, evolve. To have a better idea, we need to know which processes have influenced their evolution in the past. Using (phylo)genetics, ecology, functional traits and species distribution modelling we may better understand this.

P1070214

Tarsius bancanus in Borneo

If selected, this video will be shown at the Evolution meeting in Austin, Texas, this June – I won’t be there, but please vote if you are! Thanks!

 

Watch the video here.

CAD: a macrofossil angiosperm database

Yaowu Xing and colleagues (Maria A. Gandolfo, Renske E. Onstein, David J. Cantrill, cadBonnie F. Jacobs, Gregory J. Jordan, Daphne E. Lee, Svetlana Popova, Rashmi Srivastava,Tao Su, Sergei V. Vikulin, Atsushi Yabe, and H. Peter Linder) just published an article presenting the CAD (Cenozoic Angiosperm Database): Testing the Biases in the Rich Cenozoic Angiosperm Macrofossil Record in International Journal of Plant Sciences. The database is available from http://www.fossil-cad.net/.

The angiosperms currently have approximately 350,000 species, but how have angiosperms achieved such a high diversity? This question has bothered evolutionary biologists for centuries. The fossil database allows us to understand diversity changes in the past. Especially for angiosperms little is known about the temporal dynamics of species, lineage diversification and richness. It is structured by site (geographical information for each fossil assemblage), geology (name, age, epoch and stages of the formation), taxon (identification reliability and nearest living relatives of each taxon) and taxonomy. We hope that researchers will use the database to understand macro-evolutionary processes in angiosperms – possibly combining data from the database with inferences made from molecular phylogenetics.

For any questions concerning the database, contact Yaowu: yxing (at) fieldmuseum.org.

Beyond climate: why are there so many species of flowering plants in mediterranean-type ecosystems?

Have you ever wondered why – evolutionary speaking – the mediterranean floras of the world are so species-rich (e.g. the Cape of South Africa and Western Australia)? And why species look so similar in these systems (small, fibrous leaves adapted to deal with drought and low nutrient soils)?

We (Peter Linder and I) may give you a clue in a recently published study: “Beyond climate: convergence in fast evolving sclerophylls in Cape and Australian Rhamnaceae predates the mediterranean climate” in Journal of Ecology.

Although the very similar climatic conditions among mediterranean-type ecosystems were previously thought to drive this patterns of morphological ‘convergence’, it may not be the only important factor.  Furthermore, it seems that these typical morphological characteristics of the plants (i.e. sclerophyllous leaves) may also have influenced their evolutionary fate: well-adapted leaves may reduce your chance to go extinct. Some groups of plants may therefore have evolved a whole bunch of species – all with similar functional traits – and so contributed to the extraordinary species diversity in these mediterranean-type ecosystems.

cover image

Mediterranean-type ecosystem in the Cape of South Africa